

Influenza viremia in blood donors

Philip Norris, M.D.

Blood Systems Research Institute and University of California, San Francisco

Influenza genome

History of influenza A pandemics

Does viremia occur in influenza A?

 Viremia is rarely detected during symptomatic influenza infection

 Viremia may occur during presymptomatic or asymptomatic influenza

Viremia in influenza A

- 15 subjects infected by nasal challenge with Bethesda 10/63 strain (Asian flu, H2N2)
- Virus detected in only one sample (nasal) using rhesus monkey kidney tissue culture
- 6 subjects seroconverted
- 4 seroconverting subjects tested with more sensitive egg inoculation of amniotic sac

Viremia in influenza A (H2N2)

Day after challenge	% detectable viremia
1	100
2	50
3	25

•Viremia detected in 4 of 4 patients tested at day 1

•One subject with 3 days' viremia was asymptomatic but did seroconvert

Stanley & Jackson, Trans. Assoc. Am. Physicians, 1966

Primary Outcome

 Determine the prevalence of influenza A viremia or antigenemia during periods of outbreak among healthy blood donors

Secondary outcome

 Measure the relative sensitivity of RNA and antigen detection assays in different blood compartments

Study design -- Validation

- Validate available detection assays for use on different blood fractions (e.g. plasma, RBC, PBMC)
- Use virus spiking experiments for H3N2 influenza A into whole blood followed by separation of compartments
- Infect ferrets with H5N1, then longitudinally measure virus in each of the separated blood components

Detection of influenza A

 Techniques have improved since the 1960's

 PCR and TMA technologies are highly sensitive and specific

Direct antigen detection also possible

Gen-Probe Influenza A TMA specificity

Isolate	ATCC Number		Flu A Ttime	೨	Target	Flu B Ttime	C
Adeno 4	RI-67 (ATCC VR-4)	Flu A	-	+	Flu B	-	+
Adeno 7	Gomen (ATCC VR-7)	Flu A	-	+	Flu B	-	+
Adeno 11	Slobitski (ATCC 12-VR)	Flu A	-	+	Flu B	-	+
Adeno 18	DC strain (ATCC VR-19)	Flu A	-	+	Flu B	-	+
Adeno 29	Strain BP-6 (ATCC VR-272)	Flu A	-	+	Flu B	-	+
Human coronoavirus	Human coronoavirus 229E, Group 1 (ATCC VR-740)	Flu A	-	+	Flu B	-	+
CoV	Human coronavirus OC43, Group 2 (ATCC VR-759)	Flu A	-	+	Flu B	-	+
Parainfluenza virus 1	Clinical Isolate	Flu A	-	+	Flu B	-	+
Para 1	Parainfluenza type1 (ATCC VR-1380)	Flu A	-	+	Flu B	-	+
Para 2	Clinical Isolate	Flu A	-	+	Flu B	-	+
Para 2	Parainfluenza 2, Greer strain (ATCC VR-92)	Flu A	-	+	Flu B	-	+
Para3	Clinical Isolate	Flu A	-	+	Flu B	-	+
Para 4a	Parainfluenza 4a, strain M-25 (ATCC VR-1378)	Flu A	-	+	Flu B	-	+
Rhinovirus	Clinical Isolate	Flu A	-	+	Flu B	-	+
Respiratory Syncyntial Virus	Clinical Isolate	Flu A	-	+	Flu B	-	+
RSV	RSV strain B WV/14617/'85 [B-1 wildtype] (VR-1400)	Flu A	-	+	Flu B	-	+
RSV	RSV strain A-2 (VR-1540)	Flu A	-	+	Flu B	-	+
Flu A control RNA	IVT of Flu A/Beijing (H1N1) (CDC isolate)	Flu A	17.7	n/a	Flu B		+
Flu A	A/Port Chalmers/1/73 (H3N2) (ATCC VR-810)	Flu A	14.2	n/a	Flu B	_	+
Flu A	A/Mal/302/54 (H1N1) (ATCC VR-98)	Flu A	12.3	n/a	Flu B	-	+
Flu A	A/Hong Kong/8/68 (H3N2) (ATCC VR-544)	Flu A	11.3	n/a	Flu B	_	+
Flu B Control RNA	IVT of Influenza B/Maryland/1/59 (ATCC VR-296)	Flu A	-	+	Flu B	23.2	n/a
Flu B	B/Lee/40 (ATCC VR-101)	Flu A	-	+	FluB	20.5	n/a

Gen-Probe TMA sensitivity

Influenza A

BD Directigen EZ -- Sensitivity

Influenza Viral Strain	Limit of detection (CEID50/mL*)
A A/PR/8/34 (H1N1)	1.75E+04
A A/FM/1/47 (H1N1)	1.98E+03
A A/NWS/33 (H1N1)	1.00E+04
A A1/Denver/1/57 (H1N1)	5.56E+03
A A/New Jersey/8/76 (H1N1)	4.45E+03
A A/Port Chalmers/1/73 (H3N2)	1.00E+03
A A/Hong Kong/8/68 (H3N2)	2.78E+02
A A2/Aichi2/68 (H3N2)	3.50E+03
A A/Victoria/3/75 (H3N2)	2.78E+04

^{*} CEID50/mL = Chick Embryo Infectious Dose at which 50% of the embryos perish

BD Directigen EZ -- Animal Strains

-				
Influenza Virus Animal Isolates	Sub Type	Tested Concentration (CEID50/mL)	Flu A Result	Flu B Result
A/Turkey/Kansas/4880/80	A (H1N1)	2.00E+08	Р	N
A/Mallard/New York/6750/78	A (H2N2)	3.16E+07	Р	N
A/Turkey/England/69	A (H3N2)	1.26E+07	Р	N
A/Chicken/Alabama/75	A (H4N8)	2.00E+06	Р	N
A/Turkey/Wisconsin/68	A (H5N9)	7.94E+07	Р	N
A/Turkey/Canada/63	A (H6N8)	7.94E+05	Р	N
A/Turkey/Oregon/71	A (H7N3)	1.26E+07	Р	N
A/Turkey/Ontario/6118/67	A (H8N4)	1.26E+07	Р	N
A/Turkey/Wisconsin/66	A (H9N2)	2.00E+06	Р	N
A/Chicken/Germany/N/49	A (H10N7)	5.01E+07	Р	N
A/Duck/Memphis/546/74	A (H11N9)	7.94E+07	Р	N
A/Duck/Alberta/60/76	A (H12N5)	3.16E+07	Р	N
A/Gull/MD/704/77	A (H13N6)	3.16E+07	Р	N
A/Mallard/Gurjev/263/82	A (H14N5)	3.16E+07	Р	N
A/Shearwater/WA/2576/79	A (H15N6)	2.00E+06	Р	N

Ferret model of avian influenza

HPAI H5N1 1203, Vietnam isolate

Widely dispersed virus in tissues

100% mortality at 7 days

Clinical course following infection

Weight loss

Temperature change

Gross pathology of ferret lung

Viral load from various tissues following infection with H5N1

Phosphorylation state of a lymphocyte activation protein in H5N1-infected ferrets

Study design – viremia prevalence

 Once antigen and RNA detection assays validated, measure frequency of both in blood donor population

 Target donors most likely to have viremia using existing repositories (e.g. RADAR)

Pneumonia and Influenza Mortality for 122 U.S. Cities Week Ending 5/21/2005

from http://www.cdc.gov/flu/weekly/fluactivity.htm

Weekly Influenza Activity Estimates Reported by State & Territorial Epidemiologists

Week ending December 6, 2003 - Week 49

from http://www.cdc.gov/flu/weekly/fluactivity.htm

Regional US influenza activity

	Available	Available date range Widespread acti			ead activity	ivity		
			00-01	01-02	02-03	03-04		
Chesapeake-ARC	4/12/2000	12/20/2002	1/14-1/20	1/20-1/26	Х			
SouthEastern MI - ARC	4/18/2000	12/11/2003	Х	X	2/23-3/8	Х		
Southern CA – ARC	4/11/2000	11/14/2002	Х	Х	Х			
Blood Centers of the Pacific	4/11/2000	12/5/2002	X	X	x			
Oklahoma Blood Institute	5/2/2000	12/10/2003	1/28-2/17	X	X	11/30-12/10		
Institute for Transfusion Medicine	9/12/2000	12/1/2003	Χ	Х	2/2-2/8	11/16-12/1		
Florida Blood Services	9/26/2000	6/12/2002	X	X	X			

x = No widespread activity during the year.

Power calculations

Sample size		95% CI			
	Observed prevalence	Lower limit	Upper limi		
1000					
	0%	0.00%	0.30%		
	1%	0.48%	1.83%		
	2%	1.23%	3.07%		
	3%	2.03%	4.26%		
	4%	2.87%	5.41%		
	5%	3.73%	6.54%		
	6%	4.61%	7.66%		

Conclusions

 Viremia likely occurs during presymptomatic influenza A infection

 The incidence of viremia during influenza outbreaks is unknown

 We can now address the frequency of influenza A viremia amongst blood donors using new, sensitive assays

Conclusions

- Detecting influenza A viremia will have implications for blood safety, and detection will allow studies of transmission
- Detection of viremic donors will allow detailed immunology and natural history studies of asymptomatically infected donors
- The ability to detect H5N1 influenza A in blood donors could present a valuable public health monitoring tool